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Pressure of the hard-sphere solid
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The pressure of the face-centered cubic hard-sphere crystal is analyzed using two different density
functional theories: the generalized effective liquid approximation and the modified weighted density
approximation. It is shown that in both theories the dominant contribution originates from the ideal
part of the variational free energy. It is argued that in the region near close packing, reliable results
can only be obtained by using the real-space version of these theories.
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I. INTRODUCTION

The modern theory of freezing has been formulated in
the last decade within the general density functional the-
ory of nonuniform fluids [1,2]. One of its most celebrated
applications concerns the determination of the thermo-
dynamic properties and stability of the hard-sphere solid
near the fluid-solid first-order transition. The results ob-
tained from different density functional approaches for
the freezing of hard spheres into a perfect fcc crystal are
in good agreement with computer simulations (see [3] and
references therein). Recently, Denton et al. [4] have ex-
tended previous studies based en the modified weighted
density approximation (MWDA) [5] to the determina-
tion of the equation of state of the hard-sphere solid at
high densities. They have examined, moreover, the rel-
ative magnitude of the contributions to the hard-sphere
solid pressure from the ideal and excess parts of the vari-
ational free energy, showing that the former is positive in
the whole density range while the latter is negative over
a considerable range of densities. The aim of the present
report is to analyze the findings of [4] within the gener-
alized effective liquid approximation (GELA) [3], which
also gives a good estimate of the thermodynamic proper-
ties and stability of the hard-sphere solid near the fluid-
solid transition. Whereas the overall picture is found to
be qualitatively the same, we have been unable to repro-
duce some of the quantitative results of [4]. A possible
explanation for this will be given below.

In Sec. II we briefly review the GELA and the MWDA
as applied to the hard-sphere solid. The general proper-
ties of the equation of state of the hard-sphere solid are
analyzed in Sec. III. Our numerical results are presented
in Sec. IV and discussed further in Sec. V. Our conclu-
sions are gathered in Sec. VI.

II. GELA AND MWDA

The density functional theory of freezing [1,2] is based
on the idea that the Helmholtz free energy of the solid,
F[p], is a unique functional of the local density of the
solid p(r), which can be split as
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Flp] = Fia[p] + Fex[p], (2.1)

where

BFalp] = [ dr o(x) {1nlA%(x)] - 1} (22)
is the ideal contribution, with 8 = 1/kgT the inverse
temperature and A the thermal de Broglie wavelength,
and

BFule) = - [ drote) [ o pte)

x / A1 = ) eer's o)) (2.3)

is the excess term. In (2.3) ¢(r,r’;[Ap]) is the direct corre-
lation function of the solid and A (0 < A < 1) is a param-
eter defining a linear path of integration in the space of
density functions py(r) = Ap(r) connecting the zero ref-
erence density to the local density of the solid. The local
equilibrium density of the solid is determined by mini-
mizing F[p] at constant average density. This variational
procedure involves the direct correlation function of the
solid which is the only unknown in (2.2) and (2.3) and
hence some explicit approximation for the excess contri-
bution Fex[p] is required.

We are concerned here with a class of approximations
(GELA [3] and MWDA [5]) which, based on the simi-
larity of the thermodynamic properties of the solid and
fluid phases, map the excess free energy per particle of
the solid fex[p] = Fex[p]/N, where N = [ drp(r) is the
number of particles, onto that of an effective uniform
fluid,

1
Bleclel = 9(p) = =5 [ ar [ ax (-2 e(isli ),

(2.4)

where ¥(p) = Bfex(p), With fex(p) and c(|r|; Ap) denoting

the excess free energy per particle and the direct corre-

lation function of the corresponding uniform fluid, re-
spectively, and p = p[p] being the effective liquid den-

3632 ©1995 The American Physical Society



52 PRESSURE OF THE HARD-SPHERE SOLID

sity which is used to represent the solid of density p(r).
Equation (2.4) is known as the thermodynamic mapping
[3]. Note that, as we will be concerned below with the
hard-sphere system, we have anticipated that (5), as
indicated, is independent of the temperature.

The prescription for the effective liquid density p in the
GELA is to identify the thermodynamic mapping (2.4)
with the structural mapping (see [3] for details) defined
by

[ awow) [ ar' o) cte, e (o)

= [arote) [ ar' o) elle - ip), (25)

while in the MWDA the effective liquid density p has
the form of a doubly weighted solid density (see [5] for
details), i.e.,

b= [ drow) / dr' p(r') w(ir = ¥'l;3),  (2.6)
with the weight function w in (2.6) given by
w(lelip) = 55 [ (1l 0) + 500 (p)] (2.7)

where V is the volume of the system and, as usual, the
prime denotes differentiation with respect to the argu-
ment.

In both approaches, a self-consistent equation for the
determination of p in terms of the local density of the
solid p(r) and the direct correlation function of the liquid
¢(|r; p) is obtained. The complicated functional depen-
dence of j can be simplified if p(r) is parametrized as a
sum of normalized Gaussians centered about the lattice
sites:

(2.8)

p(r) = (—)3/2 Z e~olr=r;)*

where a is the inverse width of the Gaussians and the
sum runs over the Bravais lattice vectors {r;}. Using
this parametrization, the effective liquid density in the
GELA is given by p = p(A = 1), where p()) is the unique
solution of the differential equation [3]

o? R .
aaz M (B(A))] = 2(6(X); p, @), (29)
satisfying the initial conditions
A « 1
[P(Mr=o = [f'(Mrzo = 3205 p0),  (2:10)
where [6]
oo == 3 (27” ) / dRRc(R; )
% [e—a(R—rj) /2 _ e—a(R+r,-)’/z] . (2.11)
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with r; = |r;]|.
In the MWDA 5 is given instead by one of the solutions
of the equation
269" (p) + pp¥" ()
with p = N/V denoting the average density of the solid.
The implementation of (2.9)—(2.12) for the hard-sphere
solid can be easily undertaken since both the structure
and the thermodynamics of the hard-sphere fluid are
known from different theories. For the structure of the
fluid phase (the direct correlation function) we have con-
sidered the analytic solution of the Percus-Yevick equa-
tion for hard spheres, from which the thermodynamics of
the fluid phase (the excess free energy) has been found
from (2.4). It can be shown that (2.12) is a quartic equa-
tion in p with either no real solution or two real solu-
tions [7]. In the latter case we have found that only the
smallest real solution leads to the existence of equilibrium
solids, i.e., to a minimum in the solid free energy. Below
we will refer to this solution of (2.12) as the real-space
version of the MWDA whereas the method used in [4] will
be referred to as the reciprocal-space or Fourier version
of the MWDA.. Solving (2.9) or (2.12), the effective liquid
density p = p(p, ) depends parametrically on the aver-
age density of the solid p and on the inverse width of the
Gaussians a. From the thermodynamic mapping (2.4)
the excess free energy of the solid is finally determined

as ,Bfex[p] =Y (p(p, @)).

= &(p; p, ), (2.12)

III. GENERAL PROPERTIES OF THE
EQUATION OF STATE

For the large-a values where the equilibrium solids are
found, the ideal free energy per particle of the solid phase
(2.2) can be approximated, using (2.8), by its asymptotic

large-a form
G

As stated above, the equilibrium solids are found by
minimizing at constant average density the variational
solid free energy

Bfialp] = - 1] +3nA—1. (3.1)

Bfstore) = 3 [1n(2) = 1] +3IA ~ 1+ %(5(p, ),

(3.2)

with respect to the inverse width of the Gaussians o for
a given crystal structure, yielding
3 9p(p, am)

2a,, + da,,

¥'(p) =0, (3.3)
where a,, is the value of the inverse width parameter at
the minimum.

Since 9'(p) = [ZL(p) — 1]/p > 0, where Z;, denotes
the compressibility factor of the hard-sphere fluid, (3.3)
implies

6p(p’ am)

Do 0, (3-4)
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i.e., the effective liquid density / decreases on increasing
the localization of the hard spheres in the solid. This
behavior is the one found for sufficiently high densities
in the MWDA [5] and in the GELA [3]. Note that for
small-a values the asymptotic form used for the ideal
part of the solid free energy (3.1) is not an accurate ap-
proximation for (2.2), so (3.4) cannot be inferred. We
remark, moreover, that (3.4) is independent of the den-
sity functional approach used to map the solid into an
effective liquid, whenever the effective liquid density p is
determined from the thermodynamic mapping (2.4).

Equation (3.3) can be solved yielding a,, = an(p),
from which the free energy of the solid is finally deter-
mined as Bfs(p) = Bfs(p,am(p)), i-e.,

Bfs(p) = g [ln (fﬁ‘,@) - 1] +3InA
=1+ %(p(p, am(p)))-

In what follows, the effective liquid density p will be con-
sidered as either a function of two variables p(p, am(p))
or as a unique function of the density p(p).

The pressure Ps (or the compressibility factor Zs) of
the hard-sphere solid can be derived from (3.5), yielding

(3.5)

Zs(o) = 250 — 1p130) = 200 (0) + 2000), (39)
where

3
ZP (o) = L

20 7] (3.7)

an.(p)

is the contribution coming from the ideal-gas variational
free energy and

Z3 (o) = p¥' ()7 (p)

is the one coming from the excess variational free energy.

(3.8)

As a matter of fact, Z él) is positive definite, because
the localization of the hard spheres increases when in-
creasing the average density of the solid, i.e.,

al.(p) > 0. (3.9)

The sign of Z gz) can be analyzed by splitting the total
derivative §'(p) as

9p(p, am)
Oa,

o0y _ 9p(p,am)

anle),  (3.10)

which when substituted in (3.8) leads to the following
expression for the equation of state (3.6):

Zs(p) = oy () 2222 2m).

o (3.11)

where the equilibrium condition (3.3) has been used.
Since Zs(p) > 1 and ¥'(p) > 0, we have

9p(p, tm) S

% 0. (3.12)
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On the other hand, from (3.4) and (3.9) we find

96(p, am)

= (3.13)

o (p) <0,
independently of the map used to represent the solid.
Therefore, p'(p), and hence Zgz), has no predetermined
sign. In the numerical results presented in the next sec-
tion we show that (3.10) has a zero for intermediate solid

densities in the MWDA whereas it is always negative in
the GELA.

IV. NUMERICAL RESULTS

We will consider the two theories (GELA and MWDA)
separately. For convenience we will use the reduced vari-
ables ao? and 1 = wpo3/6, where 7 is the packing frac-
tion of hard spheres of diameter o.

A. GELA

We find that solutions of (3.3) start to appear for >
0.48 and persist up to n < 7cp, Where 1, = 7r\/§/6 ~
0.74 denotes the packing fraction at close packing of the
fcc crystal. Since the low-density behavior was already
discussed in [3,6], we will concentrate here on the high-

TABLE 1. Inverse width of the Gaussians a.,o? and effec-
tive liquid density 4 = 7p0>/6 of the hard-sphere fcc solid
as obtained from the GELA (2.9) and the real-space MWDA
(2.12) for various packing fractions. The direct correlation
function and the free energy per particle of the fluid phase
have been described by the Percus-Yevick approximation.

GELA MWDA
n amo? 7 amo? 9
0.50 56.4 0.331 72.5 0.291
0.51 68.0 0.323 82.2 0.288
0.52 80.9 0.317 93.2 0.286
0.53 95.6 0.313 105.6 0.283
0.54 112.7 0.309 119.8 0.281
0.55 132.8 0.305 136.3 0.280
0.56 156.6 0.302 155.5 0.278
0.57 185.1 0.300 178.0 0.277
0.58 219.9 0.297 204.9 0.276
0.59 262.4 0.295 237.4 0.275
0.60 315.3 0.293 277.1 0.275
0.61 381.8 0.291 326.0 0.274
0.62 467.3 0.290 387.8 0.274
0.63 578.6 0.288 466.9 0.273
0.64 727.8 0.286 569.3 0.274
0.65 932.1 0.285 710.5 0.273
0.66 1222 0.283 906.5 0.273
0.67 1652 0.282 1191 0.274
0.68 2322 0.281 1628 0.274
0.69 3448 0.280 2352 0.274
0.70 5542 0.279 3682 0.274
0.71 10094 0.278 6520 0.275
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FIG. 1. Compressibility factor Zs(p) of the hard-sphere fcc
solid (continuous line) vs the packing fraction n as obtained
from the GELA. The contributions Zél) and Zf:) [see (3.7)
and (3.8)] are denoted by full dots and full squares, respec-
tively. The direct correlation function and the free energy
per particle of the fluid phase have been described by the
Percus-Yevick approximation.

density solids only. We find that (3.9) is always satisfied
(see Table I) whereas p'(p) ~ 0. Therefore the pressure is

dominated (see Fig. 1) by Z g) . This is easily understood
by observing that in the vicinity of 7, the inverse width
am0o? shows a clear tendency to diverge (see Table I).
The reason for this can be inferred from (2.11) since, for
densities in the neighborhood of the close packing density,
®(p; p, @) is dominated by the exp[—a(R —r;)2/2] terms
with the smallest (R—r;)? values, i.e., for R ~ 0 and R ~
r1, with r; the nearest-neighbor distance. From Table I
it can be found that a,,(r; — 0)? tends to a constant as
71 tends to 7¢p. This implies that near close packing, the
mean-square deviation (r?) = 3/2a,, vanishes as (r; —
)%, or that

1/3
Q02 ~ (ch) -1
n

as 7 — 7cp. Using (4.1) for the determination of Zél)

i (4.1)

and neglecting the small contribution of Z éz) yields

== (32)"]

which is the well-known free-volume equation of state [8].
From Table II it is seen that our results are indeed close
to satisfying (4.2)

-1

(n— 77Cp)a (4.2)

B. MWDA

For small densities (7 < 0.63) the behavior of the
MWDA results of [4] is very similar to that of the above
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TABLE II. Compressibility factor of the fcc hard-sphere
solid as predicted by the GELA (2.9) and the real-space
MWDA (2.12), and from free-volume theory [8] for various
packing fractions 7. The direct correlation function and the
free energy per particle of the fluid phase have been described
by the Percus-Yevick approximation. We also include the re-
sults obtained from the reciprocal-space MWDA of Denton et
al. [4].

n  Zs(GELA) Zs(MWDA) Zs(MWDA) [4] Zs(FVT)

0.50 9.7 7.9 7.9 8.2
0.51 10.0 8.2 8.2 8.6
0.52 10.3 8.6 8.6 9.0
0.53 10.7 9.0 9.0 9.5
0.54 11.2 9.4 9.4 10.0
0.55 11.7 10.0 10.0 10.6
0.56 12.3 10.6 10.6 11.2
0.57 13.0 11.2 11.2 12.0
0.58 13.8 12.0 12.0 12.8
0.59 14.7 12.9 12.9 13.7
0.60 15.7 13.9 13.9 14.8
0.61 16.9 15.1 15.1 16.0
0.62 18.3 16.5 16.5 17.4
0.63 19.9 18.1 18.1 19.1
0.64 21.9 20.1 20.2 21.1
0.65 24.4 22.5 22.9 23.5
0.66 27.4 25.5 26.6 26.6
0.67 31.3 29.4 31.6 30.5
0.68 36.5 34.6 38.8 35.7
0.69 43.7 41.8 50.3 43.0
0.70 54.8 52.9 70.8 53.9
0.71 71.6 69.7 114 71.9
80 1 T T T

Zs

0.50 0.55 0.60 0.65

0.70 0.75

n

FIG. 2. The same as in Fig. 1 as obtained from the
real-space MWDA. We also include in the figure the com-
pressibility factor (dashed line) and the contributions ZS)
(open dots) and ngg) (open squares) as obtained from the
reciprocal-space MWDA [4].
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GELA results. At higher densities a major difference oc-
curs because p’'(p), which in the GELA is always small
and negative, starts to become positive in the MWDA
(for n > 0.63) and to grow rapidly such that, at n = 0.71,

Z él) and Z_(gz) have about the same (positive) magnitude.
In order to see whether this behavior is specific to the
MWDA, we have tried to reproduce the results of [4] by
starting from the real-space version (2.12). For n < 0.63
very good agreement with [4] was found (see Table II),
but for n > 0.63 large differences appear. The qualita-
tive behavior of p'(p) is still the same (e.g., it vanishes
at 7 ~ 0.63) but now we find its absolute value to be
always small (see Fig. 2 and Table II). We tentatively
ascribe these differences to the use in [4] of Fourier meth-
ods whose oscillatory convergence is very slow for den-
sities near close packing, where a,, diverges [cf. (4.1)],
whereas in the real-space method the behavior of (2.11) is
dominated at these densities by the first nearest-neighbor
shell.

V. PHYSICAL INTERPRETATION

From the real-space results of both the GELA (2.9) and
the MWDA (2.12) we find that the equation of state of
the hard-sphere crystal is dominated, at high densities,
by Z_(gl). This term originates from the ideal-gas term
of the variational free energy and therefore was termed
“ideal-gas pressure” in [4]. This nomenclature is, how-
ever, somewhat misleading because once the variational
principle (3.3) is used the “ideal-gas” and “excess” free
energies become related to each other. Indeed, using (3.3)
we can rewrite this “ideal-gas pressure” Z _(91) in terms of
the excess free energy, viz.,

28 = —palp () 2L0m) gy ), (51)
Um
or else write the total pressure entirely in terms of the
excess free energy only [see (3.11)].
In both the GELA and the real-space MWDA it is

found that Z ng) is negative over a considerable range of
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densities (0.46 < < 0.63 in the MWDA and 0.48 <
7 S 7Mep in the GELA) and always small. The negative
sign of this “excess pressure” (as it was termed in [4])
was interpreted in [4] as implying the presence of an “ef-
fective” attraction. This notion of an effective attraction
operating in the hard-sphere solid, but not in the hard-
sphere fluid, remains, however, somewhat vague. If it is
assumed to mean the potential of mean force as in [9],
then this potential will always oscillate as a result of the
formation of neighboring shells around the central par-
ticle as described by any typical correlation function for
sufficiently high densities. If, on the contrary, one is re-
ferring to the depletion potential of [10] then one requires
the presence of at least two different species of particles
with the “depletion attraction” due to the expulsion of
a shell of small particles around a central large particle.
Moreover, in both these cases no distinction can be made
between the high-density fluid phase and the solid phase,
whereas the “effective attraction” of [4] is supposed to
operate only in the solid phase.

VI. CONCLUSIONS

The equation of state of the fcc hard-sphere crystal was
analyzed using two different density functional theories,
the GELA and the MWDA. At densities near close pack-
ing the results of [4] could not be reproduced by using
the real-space version of the MWDA embodied in (2.12).
The results of (2.12) do, however, agree well with those
of the GELA of (2.9). Both predict that the pressure of
the hard-sphere crystal is dominated by the contribution
coming from the ideal-gas variational free energy while
the contribution from the excess variational free energy
is always small in magnitude.
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